Recent workshops and conferences have made important steps in qualifying and comparing results, and obtaining a firmer grasp on analytical and numerical tools to simulate Einstein equations. Solutions to these strong-field problems are vital to explaining astrophysical phenomena involving black holes and neutron stars and the physical interpretation of gravitational waveforms. Numerical relativity can also address fundamental aspects of general relativity such as critical phenomena and cosmic censorship. Important results have been produced and the field is headed for ever more exciting endeavours.

Classical and Quantum Gravity (CQG) is published by the Institute of Physics, a not-for-profit learned society, and offers all authors a high quality professional peer review and publishing service. As a CQG author you’ll benefit from:

- Fully electronic submission, review and proofing via Web or e-mail
- Fair and constructive refereeing by two independent reviewers
- Referee reports in only 60 days
- Submission-to-online publication in only 120 days
- Wide international visibility at over 1,300 institutions
- High readership - 10,000 full-text downloads each month
- High impact factor of 2.292
- Each article freely available for 30 days online

Of special interest for those undertaking numerical work is the facility to publish supplementary data alongside your article. Supplementary files might include initial or final data sets, extra figures, animations, movies and software code. The files are available to the reader immediately from the article abstract and are permanently archived as part of our electronic journals service. There is also an online repository specifically designed for the permanent storage and sharing of software code, which has facilities for linking to individual articles, and for the ongoing updating of code.

How to publish in Classical and Quantum Gravity
The Editorial Board welcomes further papers in this topic. If you would like to publish in CQG on this or any other aspect of gravitational physics, please contact us using our online submissions form at www.iop.org/journals/authorsubs or e-mail cqg@iop.org.

Recent papers published in this area include:
Numerical relativity using a generalized harmonic decomposition
F Pretorius Class. Quantum Grav. 22 425, 21 Jan 2005
The discrete energy method in numerical relativity: towards long-term stability
L Lehner, D Neilsen, O Reula and M Tiglio Class. Quantum Grav. 21 5819, 21 Dec 2004
Numerical computation of constant mean curvature surfaces using finite elements
Jan Metzger Class. Quantum Grav. 21 4625, 7 Oct 2004
A remedy for constraint growth in numerical relativity: the Maxwell case
Gioel Calabrese Class. Quantum Grav. 21 4025, 7 Sept 2004
Black-hole excision with multiple grid patches
Jonathan Thornburg Class. Quantum Grav. 20 3665, 7 Aug 2004
New phase diagram for black holes and strings on cylinders
T Harmark and N A Obers Class. Quantum Grav. 21 1709, 2 Mar 2004
Evolutions in 3D numerical relativity using fixed mesh refinement
E Schnetter, S H Hawley and I Hawke Class. Quantum Grav. 21 1465, 23 Feb 2004
Spherical harmonic decomposition on a cubic grid
C W Misner Class. Quantum Grav. 21 S243, 13 Jan 2004
Nonlinear impact of perturbation theory on numerical relativity
E Seidel Class. Quantum Grav. 21 S339, 13 Jan 2004
Tips for implementing multigrid methods on domains containing holes
S H Hawley and R A Matzner Class. Quantum Grav. 21 805, 5 Jan 2004
Towards standard testbeds for numerical relativity
M Alcubierre, G Allen, C Bona, D Fiske, T Goodale, F Siddhartha Guzmán, J Hawke, S H Hawley, S Husa, M Koppitz, C Lechner, D Pollney, D Rideout, M Salgado, E Schnetter, E Seidel, H Shinkai, D Shoemaker, B Szilágyi, R Takahashi and J Winicour Class. Quantum Grav. 21 589, 10 Dec 2003
A new general purpose event horizon finder for 3D numerical spacetimes
P Diener Class. Quantum Grav. 20 4901, 6 Oct 2003

Topical reviews
Please check our Web site for details on topical reviews in this area.